Optimality Conditions for Optimization Problems with Complementarity Constraints
نویسنده
چکیده
Optimization problems with complementarity constraints are closely related to optimization problems with variational inequality constraints and bilevel programming problems. In this paper, under mild constraint qualifications, we derive some necessary and sufficient optimality conditions involving the proximal coderivatives. As an illustration of applications, the result is applied to the bilevel programming problems where the lower level is a parametric linear quadratic problem.
منابع مشابه
Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz. Necessary optimality conditions and regularity conditions are given. Our approach are based on the Michel-Penot subdifferential.
متن کاملConstraint qualifications and optimality conditions for optimization problems with cardinality constraints
This paper considers optimization problems with cardinality constraints. Based on a recently introduced reformulation of this problem as a nonlinear program with continuous variables, we first define some problem-tailored constraint qualifications and then show how these constraint qualifications can be used to obtain suitable optimality conditions for cardinality constrained problems. Here, th...
متن کاملTwo-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints
This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints. Firstly, we consider some lower level constraint qualifications (CQs) for this problem. Then, under these CQs, we derive formula for estimating the subdifferential of its valued function. Finally, we present some necessary optimality condit...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملMangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 9 شماره
صفحات -
تاریخ انتشار 1999